Modeling Update

SOUTH CAROLINA ELECTRICITY MARKET REFORM MEASURES ADVISORY BOARD

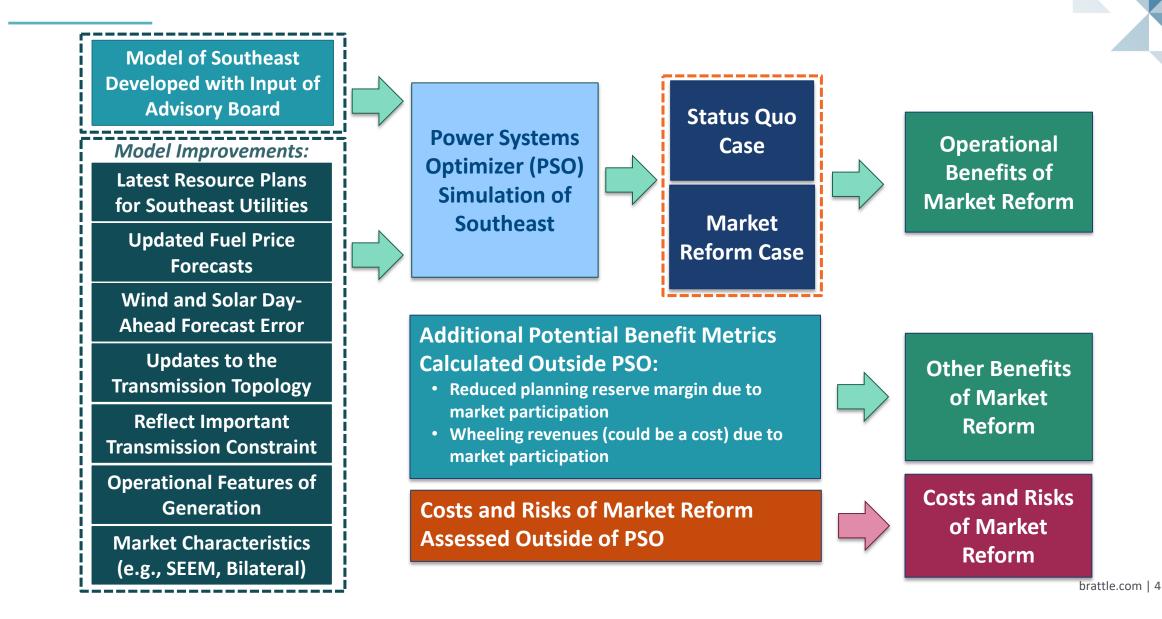
PREPARED BY Hannes Pfeifenberger Kathleen Spees Sasha Kuzura Evan Bennett Son Phan Ellery Curtis **PRESENTED FOR** South Carolina EMRM Advisory Board

12/19/2022

Agenda

1	Objectives
2	Data Collection and Assumptions Update
3	Benchmarking Results
4	Next Steps

Agenda


1	Objectives

Objectives for this Meeting

- Provide an update on data collection and modeling assumptions
- Share draft of model benchmarking results
- Discuss next steps

Review of Study Framework and Benefits Calculation

Simulated Market Reform Options

We are planning to simulate four different market reform options that represent part of the spectrum of possible reform options

Market Reform Options

Joint Dispatch Agreement in the Carolinas

Energy Imbalance Market in the Southeast

Southeast RTO (w/ Vertically Integrated Utility)

Carolinas in PJM RTO (w/ Vertically Integrated Utility The analysis will need to start with an assessment of the Status Quo, including the SEEM

- We model the entire Southeast, incorporating Advisory Board members' data
- We will simulate one 2030 scenario for each option and compare against the Status Quo

Proposed Market Reform Options to Analyze

Proposed Market Reform Options to Assess Qualitatively and Based on Experience in Other Jurisdictions

For market options not explicitly modeled, we would assess them based on the negative/positive experiences in other jurisdictions, and other credible analyses of costs, benefits, and risks that are applicable to South Carolina

Other Julisaictions
Partial Retail Choice
Full Retail Choice
Additional Reforms of IRP Process
Generation Divestiture
Securitization of Retiring Thermal Assets
Retail Rate Re-Design
Community Choice Aggregation
Creation of Distribution System Operators

Modeling Steps And Progress Since Last Time

Step 1 – Benchmark and Calibrate the Model (Largely Complete)

- Simulate the Southeast using 2020 inputs to verify system dynamics
- Ensure that SEEM member entities and PJM are correctly represented

Step 2 – Create 2030 Status Quo Case (In Progress)

- Model SEEM market
- Get input from the Advisory Board
- Update inputs to forecasted 2030 values

Step 3 – Test Market Reform Options (In Progress)

- Model study market constructs
- Compare benefit metrics against status quo case

Agenda

2	Data Collection and Assumptions Update

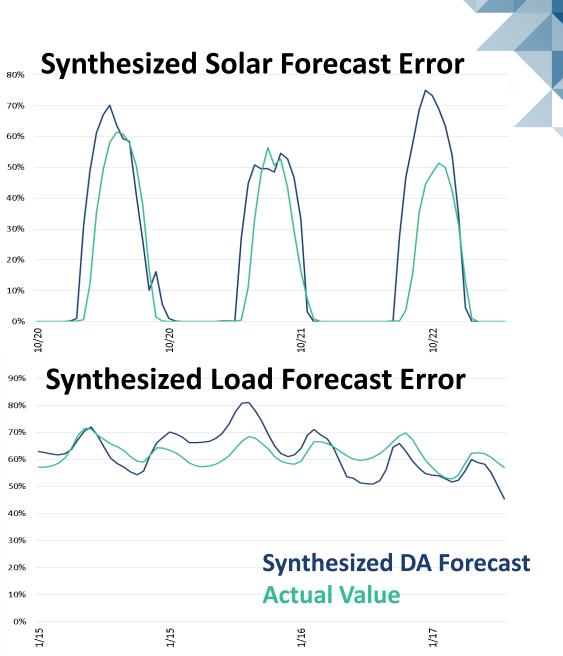
Data Collection Matrix

Data collection is largely finished.

- We have a few remaining questions as we sort through data collected
- We are now implementing it into the model
- = Data collected and implemented in model
 = Data collected and being implemented
 = Some outstanding items/questions

Data Collection Status

Generation Operational	
Future Generation Resource Mix	
Fuel Price Forecasts	
Transfer Capabilities	
Demand Forecasts	
Forecast Uncertainty	
Transmission Upgrades	
SEPA Hydro Budgets	
Market Participation Parameters	
System Operation Discussions	

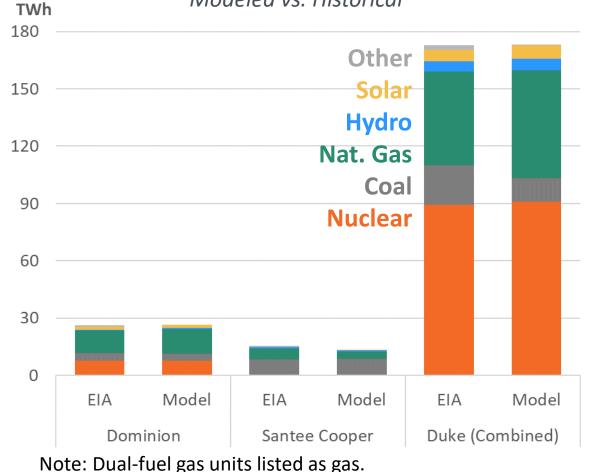

Day Ahead Forecast Uncertainty

Duke provided hourly DA forecast errors for total load and solar

Error synthesis method:

- Assume daily forecast error shapes are independent
- Create sample of daily error shapes
- Draw random samples, with replacement
- Apply shapes to existing load and solar profiles
- Re-scale to actual values

We intend to use persistent forecast error for wind.

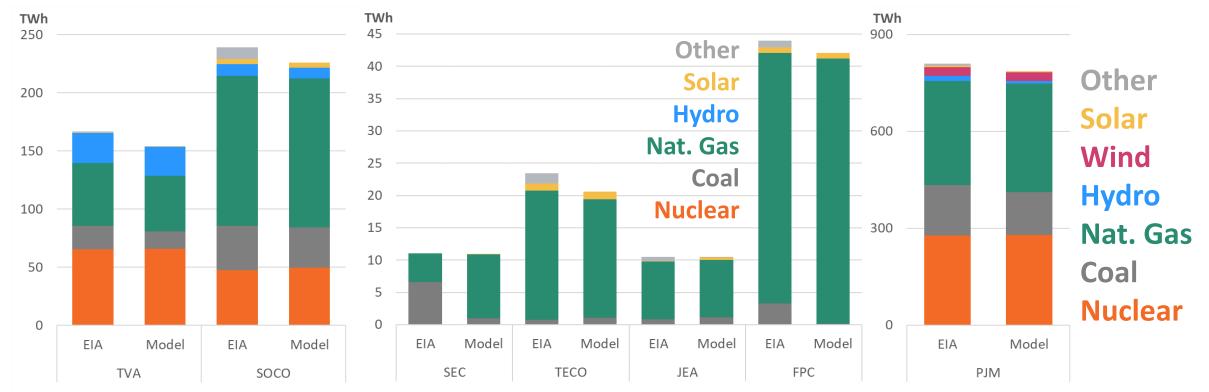

Generation Mix

Modeled generation is benchmarked against 2020 data from EIA Form 923

Differences in totals are due to trading

The Carolinas generation mix benchmarks well against historical data

- Santee Cooper under-generating due to higher imports, pushing down goal coal/gas generation
- Tuning coal/gas generation balance in Duke
- Duke PSH runs 60% less than historical


2020 Generation Mix

Modeled vs. Historical

Generation Mix

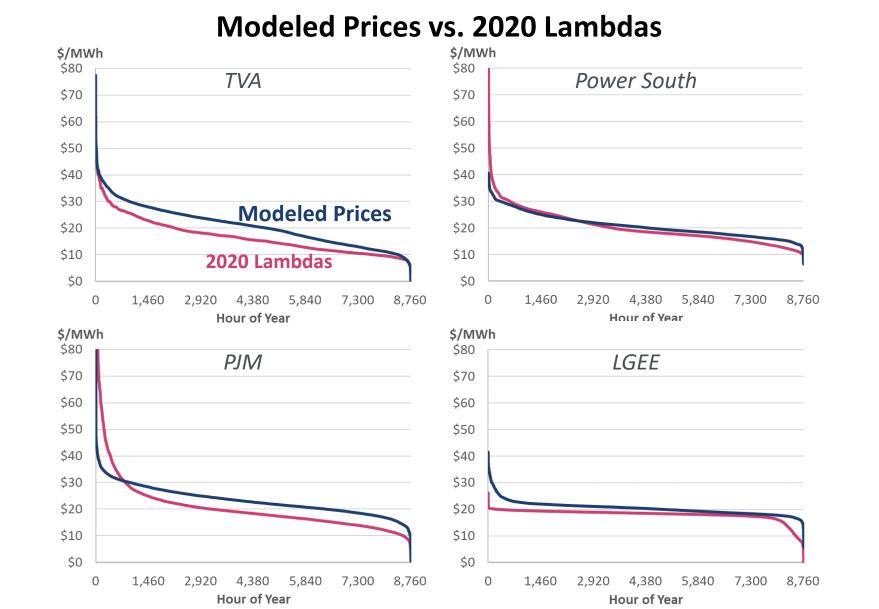
Modeled generation mix matches well to historical values, with differences due to modeled trading.

Modeled 2020 Generation Mix vs. Historical

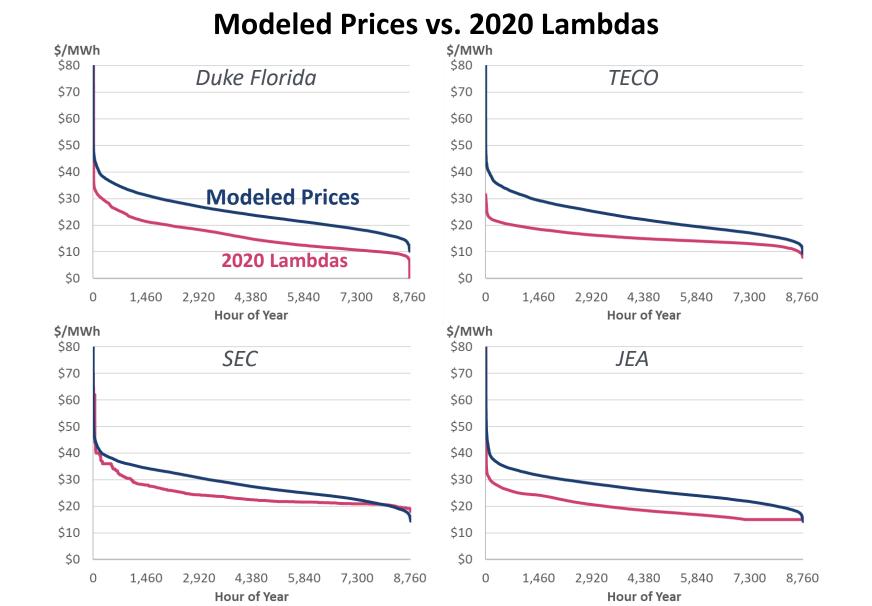
BENCHMARKING RESULTS: CAROLINAS

Energy Prices

We benchmark modeled dayahead load-weighted average LMPs against system lambdas from FERC 714 filings


Modeled prices do not always match historical marginal unit costs.

Modeled Prices vs. 2020 Lambdas \$/MWh \$80 Santee Cooper \$70 \$60 \$50 \$40 **Modeled** Prices \$30 \$20 2020 Lambdas \$10 \$0 2,920 4,380 7,300 0 1,460 5,840 8,760 Hour of Year \$/MWh \$/MWh \$80 \$80 Duke Energy Carolinas Duke Energy Progress \$70 \$70 \$60 \$60 \$50 \$50 \$40 \$40 \$30 \$30 \$20 \$20 \$10 \$10 \$0 \$0 7,300 8,760 1,460 2,920 5,840 1,460 2,920 7,300 8,760 0 4,380 0 4,380 5,840


Hour of Year

Hour of Year

Energy Prices (SERC SEEM Members)

Energy Prices (FRCC SEEM Members)

BENCHMARKING RESULTS: CAROLINAS

Trading

We benchmark modeled 2020 day-ahead trading against historical data

- Duke's modeled trades match historical values closely
- Santee Cooper imports more than historical
- TVA/SOCO discrepancies include effects from trades with MISO (not in the model footprint)
- PJM export volumes match historical well

TWh TWh 15 0 10 **Modeled Net Purchases** -10 **Historical Net Purchases** 5 -20 0 -30 -5 -40 -10 -50 -15 -60 -20 -70 DEC*DEP Ş 5000 PJM NP 49C 1400 St Notes: Positive values represent net imports, negative values are net exports.

Historical data represent total loads reported in FERC Form-714 minus total generation reported in EIA-923 data.

Benchmarking 2020 Trading

brattle.com | 17

Trading (continued)

Duke's data request responses (reported in FERC Form-714) differ from historical interchange by almost half

Confirm that modeled Santee Cooper imports are too high

		Sales			Net Purchases				
	Historical	Modeled	Difference	Historical	Modeled	Difference	Historical	Modeled	Difference
	GWh	GWh	GWh	GWh	GWh	GWh	GWh	GWh	GWh
Duke (Combined)	3,620	5,394	1,774	6,640	12,568	5,928	-3,020	-7,174	-4,154
SC	308	2	-307	1,298	6,457	5,160	-989	-6,456	-5,466
YAD	1,265	602	-662	0	0	0	1,265	602	-662
SCEG	23	6	-16	254	789	534	-232	-782	-551
TVA	206	1,388	1,183	47	953	906	159	435	277
SOCO	544	725	181	1,732	1,530	-201	-1,188	-805	382
PJMRTO FP	1,275	2,670	1,395	3,309	2,839	-471	-2,034	-168	1,866

Duke 2020 Interchange By BA

Note: Net interchange values taken from FERC Form-714

BA Demand Definitions

Data from FERC-714 have some differences with 2020 IRP values.

- Dominion and Santee Cooper values are from 2020 IRPs
- Duke values are based on 2018 IRP and data request values
- Values suggest that planning loads may be different from total demand served

		Peak			Total	
	IRP	Modeled	Difference	IRP	Modeled	Difference
	GW	GW	GW	TWh	TWh	TWh
Duke (Combined)	31.3	33.6	2.3	153.3	165.9	12.6
Dominion	4.9	4.6	-0.3	24.0	23.1	-0.9
Santee Cooper	5.0	4.5	-0.5	22.8	23.7	1.0

Carolina Utilities Demand Inputs

Plant-Level Generation

The model is favoring gas generation over coal

- Efficiency data and VOMs received from Advisory Board
- Historical gas prices used
 - Delivery adders from data requests, deflated to 2020
- Coal prices based on public data

We would like to verify coal prices and gas/coal delivery adders with member utilities

Generator Capacity Factor Benchmarking

Unit	Area	Туре	Capacity MW	EIA %	Modeled %	Difference %	Difference %
Roxboro	CPL	Coal	2,082	28.6%	31.5%	2.9%	10.2%
Mayo	CPL	Coal	713	10.0%	3.0%	-7.0%	-69.9%
Marshall	Duke	Coal	2,078	33.0%	13.2%	-19.8%	-60.0%
Belews Creek	Duke	Coal	2,220	22.0%	10.4%	-11.6%	-52.8%
Wateree	SCEG	Coal	684	13.8%	9.0%	-4.8%	-34.9%
Williams	SCEG	Coal	610	51.5%	60.3%	8.8%	17.0%
Winyah	SC	Coal	1150	22.4%	4.3%	-18.1%	-81%
Cross	SC	Coal	1760	40.2%	53.7%	13.5%	33.6%
Sherwood H. Smith	CPL	СС	1250	41.2%	77.5%	36.2%	87.9%
H.F. Lee	CPL	СС	1054	36.2%	84.2%	48.0%	132.8%
W.S. Lee	Duke	СС	809	50.6%	95.7%	45.1%	89.2%
Buck	Duke	СС	718	36.0%	91.2%	55.3%	153.7%
Jasper County	SCEG	СС	979	61.1%	83.3%	22.2%	36.4%
Columbia Energy Center	SCEG	СС	638	51.5%	76.8%	25.3%	49.1%
Rainey	SC	CC	520	82.4%	76.8%	-5.7%	-6.9%

4	Next Steps

NEXT STEPS

Next Steps

Receive and implement final benchmarking refinement data

Implement data gathered from Advisors into 2030 model

- Future transmission upgrades
- Reserve requirements

Model 2030 change cases for each market reform option

Evaluate modeled benefits of market reform

Calculate other costs and risk of market participation

Share preliminary results with Advisory Board in January

